Fundamentals of Communications (XE37ZKT), Part I

Comparing the AM, FM, and PM

Josef Dobeš

1 Outline

- Angle modulations: FM
- Integrating the phase
- Sine and cosine cases
- Angle modulations: PM
- Modulating the phase
- Sine and cosine cases
- Noise properties: FM
- SNR enhancements after the demodulation
- Threshold levels
- Noise properties: AM
- SNR enhancements after the demodulation
- Threshold levels

2 Angle Modulations: FM

A general formula defining the internal angle for the FM (frequency modulation, v_{m} is a modulating signal):

$$
\frac{\mathrm{d} \varphi(\mathrm{t})}{\mathrm{dt}}=v_{\mathrm{m}}(\mathrm{t}) \Rightarrow \varphi(\mathrm{t})=\int_{0}^{\mathrm{t}} v_{\mathrm{m}}\left(\mathrm{t}^{\prime}\right) \mathrm{d} \mathrm{t}^{\prime}
$$

Solving for the cases of sinusoidal or cosinusoidal modulating signals:
Sine: $\int_{0}^{t} \sin \left(\omega_{\mathfrak{m}} t^{\prime}\right) d t^{\prime}=\frac{1}{\omega_{\mathfrak{m}}}\left[-\cos \left(\omega_{\mathfrak{m}} t^{\prime}\right)\right]_{0}^{t}$

$$
=\frac{1}{\omega_{m}}\left[1-\cos \left(\omega_{m} t\right)\right] \Rightarrow \sin \left[\omega_{c} t+b\left(1-\cos \left(\omega_{m} t\right)\right)\right]
$$

Cosine: $\int_{0}^{\mathrm{t}} \cos \left(\omega_{\mathrm{m}} \mathrm{t}^{\prime}\right) \mathrm{d} \mathrm{t}^{\prime}=\frac{1}{\omega_{\mathrm{m}}}\left[\sin \left(\omega_{\mathrm{m}} \mathrm{t}^{\prime}\right)\right]_{0}^{\mathrm{t}}$

$$
=\frac{1}{\omega_{m}} \sin \left(\omega_{\mathfrak{m}} t\right) \Rightarrow \cos \left[\omega_{c} t+b \sin \left(\omega_{m} t\right)\right]
$$

2.1 FM: Carrier Sine, Modulating Sine

$$
\sin \left[\omega_{c} t+b\left(1-\cos \left(\omega_{m} t\right)\right)\right], \frac{\omega_{c}}{\omega_{m}}=24, b=500
$$

2.2 FM: Carrier Cosine, Modulating Cosine

$$
\cos \left[\omega_{c} t+b \sin \left(\omega_{\mathfrak{m}} t\right)\right], \frac{\omega_{c}}{\omega_{m}}=24, b=500
$$

3 Angle Modulations: PM

As the opposite of FM , the phase is proportional to the modulating signal (not to its integral as that in FM), i.e.

$$
\varphi(\mathrm{t})=v_{\mathrm{m}}(\mathrm{t})
$$

For the continuity requirements, the two following cases are possible:
Sine: $v_{m}(t)=\sin (\omega t)$

$$
\Rightarrow \sin \left[\omega_{c} t+\beta \sin \left(\omega_{m} t\right)\right]
$$

Cosine: $\nu_{m}(t)=\cos (\omega t)$

$$
\Rightarrow \cos \left[\omega_{c} t-\beta\left(1-\cos \left(\omega_{m} t\right)\right)\right]
$$

As a general result, the instantaneous carrier frequency is proportional to the derivative of the modulating signal (not to its magnitude as that in FM).

3.1 PM: Carrier Sine, Modulating Sine

$$
\sin \left[\omega_{c} t+\beta \sin \left(\omega_{\mathfrak{m}} t\right)\right], \frac{\omega_{c}}{\omega_{\mathfrak{m}}}=24, \beta=500
$$

3.2 PM: Carrier Cosine, Modulating Cosine

$$
\cos \left[\omega_{c} t-\beta\left(1-\cos \left(\omega_{m} t\right)\right)\right], \frac{\omega_{c}}{\omega_{m}}=24, \beta=500
$$

4 Noise Properties: FM

An enhancement of the signal-noise-ratio (SNR) after the FM demodulation:

$$
\frac{(\mathrm{SNR})_{\mathrm{O}}}{(\mathrm{SNR})_{\mathrm{C}}}= \begin{cases}\frac{3}{2} \beta^{2} & \text { without deemphasis } \\ \frac{1}{2}\left(\frac{f_{m}}{f_{d e}}\right)^{2} \beta^{2} & \text { with deemphasis }\end{cases}
$$

where $f_{d e}$ is the deemphasis cutoff frequency. For the standard FM parameters ($\beta=5, f_{m}=15 \mathrm{kHz}, \mathrm{f}_{\mathrm{de}}=2.1 \mathrm{kHz}$), the enhancements are the following:

$$
\frac{(\mathrm{SNR})_{\mathrm{O}}}{(\mathrm{SNR})_{\mathrm{C}}}= \begin{cases}15.7 \mathrm{~dB} & \text { without deemphasis, } \\ 28 \mathrm{~dB} & \text { with deemphasis. }\end{cases}
$$

For $\beta=2$ and the same f_{m} and $f_{d e}$, the enhancements are worse (see the comparison):

$$
\frac{(\mathrm{SNR})_{\mathrm{o}}}{(\mathrm{SNR})_{\mathrm{C}}}= \begin{cases}7.8 \mathrm{~dB} & \text { without deemphasis, } \\ 20 \mathrm{~dB} & \text { with deemphasis. }\end{cases}
$$

The noise threshold of the FM modulation can be estimated by the formula

$$
20(\beta+2),
$$

which gives the cutoff levels 21.5 dB and 16 dB for $\beta=5$ and $\beta=2$, respectively (see the comparison).
Entire expression for the signal-noise-ratio after the demodulation can be found in the Carlson's text book: ${ }^{1}$

$$
(\mathrm{SNR})_{\mathrm{O}}=\frac{\frac{3}{2} \beta^{2}(\mathrm{SNR})_{\mathrm{C}}}{1+\frac{12 \beta}{\pi}(\mathrm{SNR})_{\mathrm{C}} \exp \left(-\frac{(\mathrm{SNR})_{\mathrm{C}}}{2(\beta+2)}\right)}
$$

[^0]
5 Noise Properties: AM

An enhancement of the signal-noise-ratio (SNR) after the AM demodulation:

$$
\frac{(S N R)_{\mathrm{o}}}{(\mathrm{SNR})_{\mathrm{c}}}=\frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}+2}
$$

which gives the values -4.8 dB and -13.7 dB for the modulation depths $m=1$ and $m=0.3$, respectively (see the comparison).
The level threshold for the 100% modulation is approximated by 13 dB (see the comparison).
Entire expression for the signal-noise-ratio after the demodulation can again be found in the Carlson's text book:

$$
(\mathrm{SNR})_{\mathrm{O}}=\frac{\frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}+2}(\mathrm{SNR})_{\mathrm{C}}}{1+\exp \left(-\frac{(\mathrm{SNR})_{\mathrm{C}}}{4}\right)}
$$

Comparison of the FM, DSB, and AM Noise Properties

[^0]: ${ }^{1}$ A. B. Carlson, Communication Systems, McGraw-Hill 1975.

