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• Recall the concept of a System with negative feedback. The output of a

dynamic system is subtracted from the input and the resulting signal is

passed through the dynamic system.

• This is an example of a closed loop Control System. Control Systems are

designed to regulate the output of a system (aka the plant) that otherwise

would be sensitive to environmental conditions. The cruise control system

in a car is an example of a system where the output speed of a vehicle is

to follow a set reference speed.

• The behaviour of the dynamic system is modified through the use of feed-

back and by cascading the plant with an additional purposely designed

system known as a controller.

• Typically the plant is an analogue system (eg. car dynamics) but the

controller can either be analogue or digital. If a digital controller is used

this implies that extra a/d and d/a stages are added to the control system

to allow the controller interface with the dynamic system.
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• To cover this topic thoroughly, multiple courses would be required. The

goal in 3c1 is to introduce the basic ideas that govern control systems and

their design. We will focus on purely analogue controllers. The course

builds on the theory outlined in the first 4 handouts of this course.
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1 The General Form of a Control System

A control system can be thought of as any system where additional hardware

is added to regulate the behaviour of a dynamic system. Control systems can

either be open loop or closed loop. A closed loop system implies the use of

feedback in the system. We will see that using feedback allows us more freedom

to specify the desired output behaviour of the system.

Perhaps the most common architecture for a closed loop system is shown in

Fig 1.

Figure 1: A basic Control System Architecture

We will discuss the various terms in Fig 1 using the example of a car cruise

control system

• Desired Output/Reference Input - In systems where it is desired that the

output follows the input this signal sets the desired output level. In a

cruise control system this would be an electrical signal corresponding to

the desired output speed.

• Plant/Process/System - refers to the system we want to control. It gener-

ally refers to a physical process which we can either model or measure. The
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output of the system is typically not an electrical signal. In the example of

the car cruise control system, it encompasses the car dynamics (Newton’s

Laws). The output signal is the speed of the car.

• Transducer - The role of the transducer is to convert the output signal

to an equivalent electrical system (e.g. from kinetic energy to electrical

energy). This facilitates the comparison of the output signal to the input.

• Error Signal - This an electrical signal that is the difference between the

desired and true output signals.

• Controller - This is a purposely designed system to modify the behaviour

of the plant.

• Disturbance Input - External/environmental factors that affect plant be-

haviour (e.g. Wind, Gradient).

As control engineer we must be able to -

1. model/measure the dynamic behaviour of the plant/system.

2. choose an appropriate controller that allows the system output to meet a

list of user designed criteria.
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2 Case Study: Car Cruise Control System

We want to design a cruise controller for a car that uses a simple proportional

controller. i.e. The controller is no more than a simple amplifier (C(s) = Kp).

The first stage is to model the dynamics of the car. Then we will compare the

performance of both open and closed loop controllers.

2.1 Vehicle Dynamics

Here we have an input force signal r(t) (supplied by the engine) and a friction

force. The output we are interested is the velocity v(t). The system parameters

are the mass m and the friction coefficient b.

To get an ODE for the system we write down Newton’s second law

Net Force = mass× acceleration

r(t)− bv(t) = m
dv

dt

m
dv

dt
+ bv(t) = r(t)
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2.2 Open Loop Response

The Open Loop Response refers to the response of the system when there is no

feedback. The first step is to analyse the step reponse of the plant. We find the

system response as before. We will assume 0 initial conditions for the output.

m
dv

dt
+ bv(t) = r(t)

⇒ msV (s) + bV (s) = R(s)

⇒ G(s) =
V (s)

R(s)
=

1

ms+ b

So lets say the car has a mass of 1000 Kg, the friction constant is 50 Ns/m

and the output force of the engine is 500 N. Then, what is the steady state

velocity and what is step response of the system to this engine force?

First of all we can see that

G(s) =
1

1000s+ 50
(1)

Since we are interested in the step-response to a force of 500 N (i.e. e(t) =

500u(t)) and assuming 0 initial conditions the output Laplace Transform is

V (s) =
500

s(1000s+ 50)

There are many ways to get the steady state velocity. If we use the final

value theorem we get

vss = lim
t→∞

v(t) = lim
s→0

sV (s)

=
500s

s(1000s+ 50)

∣∣∣∣
s=0

=

=
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The step response is then

v(t) = L−1
(

500

s(1000s+ 50)

)
= L−1

(
10

s(20s+ 1)

)
= L−1

(
10

s
− 10

20s+ 1

)
= 10

(
u(t)− e−

t
20

)

Figure 2: A plot of v(t). This is the open loop response of the system.

We can see from the plot v(t) that it takes a long time for the car to reach

the optimum speed. Since we have a 1st Order system we can see that the

approximate the rise time is 44 seconds. The rise time has various definitions

but we define it as the time taken for the output to rise from 10% to 90% for

the final output value. It also takes approximately 100 seconds to reach the

optimal speed.

Imagine the reference speed is 10 m/s. Therefore the controller would need

to convert the electrical signal corresponding to 10 m/s into a force signal corre-
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sponding to 500N. This could be achieved by setting the gain of the proportional

controller to 50.
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2.3 Closed Loop System

Figure 3: A model for the cruise control system.

We will now show that feedback can be used to reduce the amount of time it

takes to reach the desired speed. We use the control system architecture shown

in Fig 3 and assume that there are no disturbance inputs. To investigate the

design of a feedback control system for the cruise control application we first

agree on performance specifications for the control system.

• Rise Time < 5s - This gives a 0 to 10 m/s time of approximately 15

seconds.

• Steady state error < 2% - the steady state should be within 2% of the

required speed.
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The first step is to estimate the transfer function of the control system

V (s) = R(s)G(s) = E(s)C(s)G(s)

= C(s)G(s)(X(s)− Y (s))

= C(s)G(s)X(s)− C(s)G(s)D(s)V (s)

Therefore we can write the transfer function as

H(s) =
V (s)

X(s)
=

C(s)G(s)

1 + C(s)G(s)D(s)

We are using a simple Proportional Controller C(s) = Kp . This implements

the control law U(s) = KpE(s), note also here D(s) = 1. This means that the

transducer has ideal behaviour Y (s) = V (s).

⇒ H(s) =
KpG(s)

1 +KpG(s)
(2)

We know from equation 1 that G(s) = 1
1000s+50 . Substituting into equation

2 we get

H(s) =
Kp

1
1000s+50

1 +Kp
1

1000s+50

=

=

Kp

Kp+50
1000
Kp+50s+ 1
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This is also a first order system. The general form of a 1st order system

transfer function can be written as

H(s) =
K

τs+ 1

where K is the dc gain and τ is the time constant1.

Therefore

τ =
1000

Kp + 50
and K =

Kp

Kp + 50
(3)

These values can be used to estimate the system specifications

Rise Time tr ≈ 2.2τ =
2200

Kp + 50

Steady State Velocity vss =
Kp

Kp + 50
×X

(4)

where X is the reference speed (i.e. 36 kmph), and

Steady State Error =
R− vss
R

× 100 = 100(1− Kp

Kp + 50
)

Therefore we must choose a value for Kp such that tr < 5 and %error < 2%.

tr =
2200

Kp + 50
< 5

⇒ Kp > 390

%error = 100(1− Kp

Kp + 50
) < 2

⇒ Kp

Kp + 50
> 0.98

⇒ Kp > 2450

Hence we need to choose Kp > 2450 to satisfy all our constraints.

1This can be verified easily by examining the form of the impulse response
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Figure 4: A plot of v(t). This is the closed loop response of the system for gains (Kp) of 400

and 2500.

This design and analysis has shown that a controller gain Kp = 390 is suf-

ficient to meet the rise time specification of 5 seconds. But for this gain the

steady-state error is over 11% (See Fig 4). Note that the maximum force de-

manded of the motor is 3900N (confirm).

The error condition can be met if we increase the gain to Kp = 2500 but

with this level of gain the speed of response has a time constant of 0.4 and a rise

time of 0.88sec. However this requires excessive acceleration and the maximum

force demanded of the motor is 24500N (confirm) .

As an interim to refining the controller well use a gain of Kp = 750 which

with a rise time of 2.75 (confirm) meeting the rise time specification but with

a steady-state error of 6.25%.
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2.4 Disturbance Inputs

We will now see how our system responds to a buffet of wind. The wind is

modelled as adding an extra force n(t) to the car. Hence we can modify our

control system model as follows

Figure 5: A model for the cruise control system.

To analyse the system response we try to obtain an expression for the output

Laplace transform of the form

V (s) = H(s)X(s) + F (s)N(s) (5)

and so need expressions for H(s) and F (s).
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Starting at the plant we get

V (s) = G(s)(N(s) +R(s))

= G(s)C(s)E(s) +G(s)N(s)

= G(s)C(s)(X(s)−D(s)V (s)) +G(s)N(s)

⇒ (1 +G(s)C(s)D(s))V (s) = G(s)C(s)X(s) +G(s)N(s)

⇒ V (s) =
G(s)C(s)

1 +G(s)C(s)D(s)
X(s) +

G(s)

1 +G(s)C(s)D(s)
N(s)

so

H(s) =
G(s)C(s)

1 +G(s)C(s)D(s)

as before and

F (s) =
G(s)

1 +G(s)C(s)D(s)
.

Substituting in for G(s), C(s) and D(s)

H(s) =
Kp

1000s+Kp + 50

and

F (s) =
1

1000s+Kp + 50
.
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So for a gain Kp = 750 we get the responses to both impulse and step wind

disturbances seen in Fig. 6. The step response is given by the inverse Laplace

transform of 1/s×F (s) and the impulse response is given by the inverse Laplace

transform of F (s).

Figure 6: The step (left) and impulse (right) response to a wind force of 200 N. i.e. The input

signal on the left is 200u(t) and on the right is 200δ(t).

From the graphs we can deduce that a constant wind force of 200 N adds an

extra 0.25 m/s (0.9 kmph) to the steady state speed and for an impulsive force

of 200 N the speed will return to its previous steady state after approximately

7 seconds.
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We will now compare this to the response of the open loop system to an

equivalent force. The block diagram for the open loop system is seen in Fig 7

Figure 7: An open loop model for the car.

From the open loop transfer function in (1), the step and impulse responses

(g(t) and h(t)) to a wind force of 200 N are given by

g(t) = L−1
(

200

s
× 1

1000s+ 50

)
= 4(1− e−0.05t)

h(t) = L−1
(

200

1000s+ 50

)
= 0.2e−0.05t

and are shown in Fig. 8.

Figure 8: The step (left) and impulse (right) response of the open loop system to a wind force

of 200 N. i.e. The input signal on the left is 200u(t) and on the right is 200δ(t).

Comparing Fig. 8 and Fig. 6 we can see that a constant wind force now

adds 4 m/s (14.4 kmph!) to the steady state speed compared with 0.25 m/s

for the cruise control system. Therefore, the control system is said to reject

the disturbance input. For impulsive disturbance the effect on the car velocity

lasts much longer for the open loop system (120 s compared to 7s).
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Hence the control system is more robust to disturbance inputs than the open

loop system.
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3 Advantages and Disadvantages of using Control Sys-

tems

So far, we have used the example of a cruise control system to highlight some

of the advantages of using feedback in dynamic systems. We will do a more

general discussion of the advantages of using feedback in control systems.

3.1 Control of the Transient Response

Figure 9: Block Diagrams for open and closed loop 1st Order systems with a proportional

controller.

Using feedback allows the transient response of the output to meet design

specifications. For example, in the cruise controller it was possible to ensure a

rise time of less than 5 seconds by using negative feedback and a proportional

controller with a gain of at least 390.

To get a better concept of why this works in general let us look at a first

order system in cascade with a proportional controller. This system can operate

in an open or closed loop manner as shown in Fig 9. The transfer functions for

the open and closed loop systems are given by

H(s) =
K

τs+ 1

and

H(s) =
K

τs+1

1 + K
τs+1

=
K

τs+ 1 +K
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respectively.

The transient responses of these systems to a unit step input can then be

obtained in the usual manner as

yopen(t) = K(1− e
−t
τ )

and

yclosed(t) =
K

1 +K

(
1− e−

1+K
τ t

)
.

In the last section we saw that the rise time is inversely proportional to the

decay rate (i.e. the factor of t in the exponent). In the open loop system the

decay rate is 1/τ which is a constant for a given plant. The controller gain K

is typically the only parameter that is allowed to be varied. Adjusting the gain

in the open loop system only changes the final value and does not affect the

rise time.

Conversely in the open loop system the decay rate (1 + K)/τ is a function

of the controller gain and so we can adjust the gain to get the desired rise time.
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3.2 Steady State Error

Feedback (or closed-loop) control also allows the steady state error to be min-

imised more reliably. This can be seen by using the final value theorem to

estimate the steady state error of the open and closed loop systems shown in

Fig 10.

Figure 10: Block Diagrams for open and closed loop 1st Order systems with a proportional

controller.

Recall, the transfer functions are

Hopen = C(s)G(s)

Hclosed =
C(s)G(s)

1 + C(s)G(s)

The steady state error is the values of the error signal e(t) = x(t) − y(t) as

t tends to ∞. Using the final value theorem

ess = lim
s→0

sE(s) (6)
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For the open loop system we have

E(s) = X(s)− Y (s) = (1− C(s)G(s))X(s)

Then for a unit step x(t),

ess = lim
s→0

s(1− C(s)G(s))
1

s
= 1− C(0)G(0).

For the closed loop system

E(s) = X(s)− C(s)G(s)

1 + C(s)G(s)
X(s) =

1

1 + C(s)G(s)
X(s)

and so

ess = lim
s→0

s
1

1 + C(s)G(s)

1

s
=

1

1 + C(0)G(0)
.

At a superficial level it appears that both the open and closed loop system

can give a zero steady state error. For the open-loop system a zero error is

obtained if we choose the controller C(s) such that C(0)G(0) = 1. For the

closed loop system C(0) = ∞ which means that the controller has a pole at

z = 0. (e.g. C(s) = 1/s)

However, the advantage of the closed loop system is that the steady state

error is much less sensitive to the choice of controller and as well as errors or

changes in the plant model G(s). This can be seen by comparing the steady

state errors of the open and closed loop systems over a range of values of the

different gain. Therefore the closed loop system is a more practical way of

controlling the steady state error.
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3.3 Sensitivity to Modelling Errors

It is not always possible to model the plant exactly. This can either be because

the system is either too complex to model or measure. We have to consider

how sensitive the control system is to parameter variations in the plant G(s).

System Sensitivity is defined as the ratio of the relative change in

system transfer function (H(s)) to the relative change in the plant

transfer function (G(s)) for a small change.

Therefore

S =

∣∣∣∣∂H/H∂G/G

∣∣∣∣ =

∣∣∣∣∂H∂G G

H

∣∣∣∣ . (7)

The sensitivity of the open and closed loop systems (Fig 10) is given by

S = C(s)
G(s)

C(s)G(s)
= 1

and

S =
C(s)

(1 + C(s)G(s))2

G(s)

C(s)G(s)/(1 + C(s)G(s))
=

1

1 + C(s)G(s)
.

It is clear to see that for C(s)G(s) > 0 the sensitivity of the closed loop

system will be less. The sensitivity of the system can be further reduced by

choosing the controller such that the loop gain C(s)G(s) is large which is not

possible for the open loop system.
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3.4 Disturbance Input Rejection

Figure 11: Open and Closed loop Models for disturbance inputs.

Disturbance inputs are modelled as a signal that is added to the system at

the input of the plant. We saw in Section 2.4 that the effect of disturbance

input on the system can be modelled as

V (s) = H(s)X(s) + F (s)N(s)

where N(s) is the disturbance and F (s) is the transfer function with respect to

the disturbance.

Examining the expression for F (s) allows us to analyse the reponse of the

system to a disturbance. The smaller the gain of F (s) the better the capability

of the system to reject disturbance inputs. For an open loop system

F (s) = G(s)

and for the closed loop system shown in Fig. 11

F (s) =
G(s)

1 +G(s)C(s)D(s)
. (8)

Looking at these expressions we see that for the closed loop system the gain

of F (s) is much less than that for the open loop system where the gain of

G(s) is large. Furthermore, increasing the gain of the controller allows the the

sensitivity of the system to disturbances to be reduced.



3.5 Disadvantages of Using Feedback 24

3.5 Disadvantages of Using Feedback

• Cost - Using feedback implies the use of an increased number of compo-

nents and complexity. This includes the measurement sensor to convert

the output signal back into an electrical signal.

• Loss of Gain - The flip side of superior sensitivity and disturbance rejec-

tion performance of closed loop systems is the associated loss of system

gain. For the control system architecture explored here the open loop

transfer function is C(s)G(s) while the closed loop transfer function is

C(s)G(s)/(1 +C(s)G(s)D(s)). Thus the gain of the closed loop system is

lower by a factor of |1/(1 + C(s)G(s)D(s))|.

• Stability - If we have a stable plant and controller then the open loop

system will always be stable. However, the closed loop system may not

be stable and thus special care must be taken to avoid instability due

to feedback. The stability of control systems will be explored in later

handouts.


